СПАЙДЕР-NGN

Система мониторинга сетей NGN/VoIP

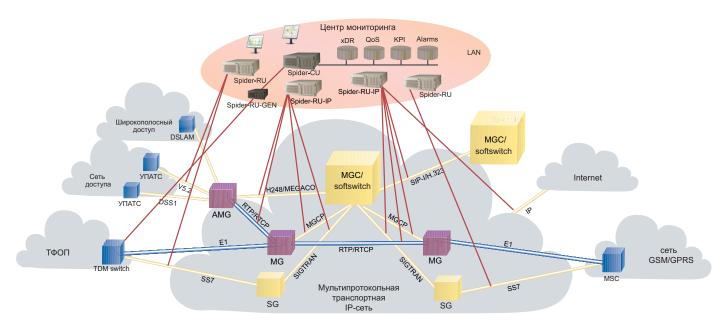
Ваши сети под контролем

Развертывание сетей следующего поколения (NGN) ставит перед операторами задачи сохранения высоких показателей качества и надежности, привычных для абонентов традиционной телефонии, при внедрении услуг связи на основе современных технологий.

Постепенность процесса перехода к NGN требует наличия в составе OSS/BSS особых средств контроля и диагностики, способных предоставить всю информцию о состоянии сети и качестве услуг, анализируя интерфейсы как внутри NGN, так и в направлении сетей ТФОП, СПС и Интернет.

В этих условиях организация единого центра эксплуатации и управления, доступ к которому имеют различные подразделения компании, значительно повышает экономическую эффективность бизнес-процессов оператора связи.

Использование системы мониторинга СПАЙДЕР-NGN в качестве основы центра управления NGN-сети обеспечивает контроль оборудования разных производителей, предоставляет унифицированную отчетность по параметрам состояния сети и качества услуг вне зависимости от технологии связи, применяемой на отдельном участке, и обеспечивает возможность расчета интегральных показателей.


Возможности системы

- контроль сигнального трафика разных технологических доменов: ОКС-7, H323, H248, SIP, SIG-TRAN.
- наблюдение за состоянием оборудования и историей аварийных сообщений (SNMP)
- анализ производительности сети связи и доступности ресурсов
- анализ качества связи
- мультирпротокольная трассировка вызовов (ISUP, SIP, H.323)
- он-лайн декодирование
- формирование детализированных записей о вызовах (xDR)
- настраиваемые KPI (ASR, NER, BMI, PDD, ...)
- генерация трафика
- измерения качества передачи речи (MOS, PESQ, G.107)
- выявление мошенничества

СПАЙДЕР-NGN представляет собой распределенную систему сбора и централизованного анализа информации. Гибкая иерархическая архитектура позволяет внедрять систему на сетях любого масшатба

Архитектура и подключение

Система сетевого мониторинга СПАЙДЕР обеспечивает распределенный сбор и централизованную обработку информации на сетях связи любого масштаба, построенных на основе различных телекоммуникационных технологий.

Система СПАЙДЕР построена по иерархическому принципу. Подключение к сети и сбор данных в системе СПАЙДЕР осуществляют удаленные модули Spider-RU и малогабаритные пробники, обеспечивающие пассивное подключение к сигнальным звеньям сети, или специальные сервера Spider-RU-IP, собирающие данные непосредственно из IP-сети через порт зеркалирования маршрутизатора.

Для решения задач тестирования и измерения качества передачи речи могут использоваться портативные временно подключаемые удаленные модули-генераторы трафика Spider-RU-GEN. Такой модуль подключается в качестве эмулятора и производит одновременно генерацию сигнального или разговорного трафика и его мониторинг, при этом другие модули системы отслеживают дальнейшее прохождение вызова.

Данные, полученные из сети, предварительно обрабатываются удаленными модулями. Центральный модуль Spider-CU управленяет всей системой мониторинга, производит просмотр информации о состоянии сети ОКС-7 и

формирует целостную картину работы сети связи. Базы данных, содержащие статистику, CDR, журнал событий, а также функции обнаружения мошенничества могут быть реализованы на Spider-CU или на отдельных модулях Spider-DR/QOS/FMS.

Все модули системы взаимодействуют по выделенной технологической сети TCP/IP. Рабочие места пользователей организуются на любых персональных компьютерах, имеющих доступ в данную технологическую сеть. При принятии соответствующих мер безопасности возможна организация удаленного доступа пользователей через сеть Интернет.

Аппаратный состав системы

Spider-RU

Удаленный модуль, предназначенный для сбора информации из каналов сигнализации. Подключение осуществляется посредством интерфейсных модулей Agent-E1 и Agent-SDH.

Spider-RU-Gen

Портативный модуль, предназначенный для генерации сигнальной и разговорной нагрузки.

Spider-RU-IP

Удаленный модуль, предназначенный для сбора данных по интерфейсам IP-сети. Данные собираются через порт зеркалирования маршрутизатора.

Spider-CU

Центральный управляющий модуль.

Spider-DR/QoS

Модуль сбора подробной информации о вызовах и расчета показателей QoS.

Spider-FMS

Модуль обнаружения несанкционированного доступа.

Модульный принцип построения программного обеспечения системы СПАЙДЕР позволяет конфигурировать необходимые приложения в зависимости от потребностей заказчика

Возможности системы

Основные показатели

Общие параметры

calls число вызовов

вн час наибольшей нагрузки

Параметры качества передачи речи

MOS средняя экспертная оценка

R **R**-фактор

DEG доля вызовов со снижением качества

передачи речи

Параметры прохождения вызовов

ASR доля отвеченных вызовов NER коэффициент эффективности сети

RNA доля неотвеченных вызовов с

нормальной причиной разъединения SSB доля вызовов, встретивших занятость

CLR доля потерянных вызовов с аномальными

причинами разъединения

Временные характеристики вызовов

СТ среднее время разговора PDD среднее время соединения

WTA среднее время ожидания (отвеченные)

wtu среднее время ожидания (неотвеченные)

вмі число тарифицируемых минут

PLR

Характеристики передачи пакетов

BTx/x число переданных/полученных байт

PTx/x число переданных/полученных пакетов

доля потерянных пакетов RDT задержка "в оба конца"

Характеристки тракта ИКМ

RFR коэффициент битовых ошибок

ESR коээфициент секунд с ошибками

SMTP

Система СПАЙДЕР-NGN обладает широкими возможностями для контроля сети связи и мониторинга услуг.

Информация о состоянии и нагрузке сети выводится на карту в режиме реального времени, собранная статистика доступна в виде табличных и графических отчетов.

"Трассировка Приложение производит отслеживание всего сигнального обмена, связанного с обслуживанием вызова, или предоставлением другой услуги. Трассировка производится в режиме реального времени или по историческим

На основе сигнальной информации формируются детализированные записи о предоставленных услугах (CDR, TDR, IPDR), которые служат исходными данными для приложений подсистем оценки качества обслуживания и обнаружения несанкционированного доступа. Для просмотра CDR пользователями используются специальные приложения, в которых реализована возможность задания критериев отбора и получения суммирующих отчетов (например, общее число вызовов, соответствующих заданному критерию).

Подсистема оценки качества обслуживания, используя CDR, сформированные системой СПАЙДЕР, производит расчет показателей QoS и ключевых инликаторов

производительности КРІ для голосовых вызовов и других услуг. Учитывается качество обслуживания вызовов, процент завершенных и незавершенных вызовов и другие КРІ. Формируются отчеты по статистике использования различных услуг, в том числе услуг доступа к информационным ресурсам, и доступности услуг. Производятся измерения качества передачи речи (G.107, MOS, PESQ), возможна также генерация трафика специальными удаленными модулями и одновременные измерения показателей, а также мониторинг сигнального обмена.

Контроль соблюдения согласованных уровней качества предоставления услуг (SLA) автоматизирован, рассчитываемые системой КРІ автоматически сравниваются с заданными пороговыми значениями, при отклонении формируется запись в журнале событий и аварийное сообщение.

Подсистема Spider FMS обеспечивает автоматический поиск и обнаружение различных типов мошенничества, пресечение новых попыток нелегального доступа, предоставление полной информации по источникам, типам и числу попыток совершения мошенничества в сети оператора. Выявляет карточный фрод, спам и вирусные атаки.

Система производит регистрацию в журнал событий изменения состояний объектов тестирования и выводит уведомления о выходе за заданные границы параметров нагрузки, показателей QoS и SLA.

Поддерживаемые протоколы

	NGN	
H.323	RAS	ITU-T H.225.0
	H.225	ITU-T H.225-0
	H.245	ITU-T H.245
	H.248/ MEGACO	ITU-T H.248
MGCP		IETF RFC 3435
SIP		RFC 2543
SIP-I		ITU-T Q.1912.5
SIP-T		RFC 3372
	SCTP	IETF RFC 2960
	M2UA	IETF 3331
	M2PA	ETF RFC 4165
SIGTRAN	M3UA	IETF RFC 3332
	SUA	IETF RFC 3868
	IUA	IETF RFC 3057
	V5UA	IETF RFC 3807
RTP		IETF RFC 3550
RTCP		IETF RFC 3550
BICC		ITU-T Q.1902
BCTP		ITU-T Q.1990
TRIP		IETF RFC 3219
	Internet cont	ent
HTTP	IETF RFC 2616	
ICQ	ICQ Ver 7	
POP3	IETF RFC 1081	

IETF RFC 788, 1981 IETF RFC 959

	LAN/WAN	
MAC	IEEE 802.3	
LLC	IEEE 802.2	
ARP	IETE RFC 826	
RARP	IETF RFC 923	
PPP	IETF RFC 1134	
LAPF	ITU-T Q.922	
IP	IETF RFC 791	
TCP	IETF RFC 793	
UDP	IETF RFC 768	
ICMP	IETF RFC 792	
IGMP	IETF RFC 2236. RFC 3376	
DHCP	IETF RFC 2131	
DNS	IETF RFC 2929	
IDRP	ISO/IEC 10747	
OSPF	IETF RFC 2328	
NetBIOS	IETF RFC 1002	
RSVP	RFC 2205	
RADIUS accounting	IETF RFC 2865, RFC 2866	
DIAMETR accounting	IETF RFC 3588	
RIP	IETF RFC 1058, 1988	
SNMPv3	IETF RFC 3416	
VRRP	IETF RFC 3768, 2004	
BGP	IETF RFC 4271	
EGP	IETF RFC 904	
LDAPv3	IETF RFC 4511	

	OKC-7		
MTP	ITU-T Q.701-Q.704, Q.707-Q.709 ANSI T1.111		
SCCP	ITU-T Q.711-Q.714 ANSI T1.112		
ISUP	ITU-T Q.761-Q.Q764, Q.767 ETSI ETS 300 121 MoU		
TCAP	ITU-T Q.771-Q.774 ANSI T1.114		
MAP	3GPP TS 29.002, ETSI GSM 09.02 ANSI TIA/EIA-41.5-D		
INAP	ITU-T Q.1218 ETSI ETS 300 374		
CAP	ETSI GSM 09.78 3GPP GSM TS 29.078		
BSSAP	ETSI GSM 08.08		
DTAP	ETSI GSM 04.08 3GPP TS 24.008 Rel-6		
BSSAP+	3GPP TS 29.018		
SMS	ETSI GSM 04.11 3GPP TS 23.040		
	Сеть доступа		
DSS1 L1	ITU-T I.431, ETSI ETS 300 011		
LAPD	ITU-T Q.921 ETSI ETS 300 125		
DSS1 L3	ITU-T Q.931 ETSI EN 300 403		
QSIG L3	ETSI ETS 300 172,		
LAPV5	ETSI ETS 300 324-1, ETS 300 347-1		
V5 L3	ITU-T Q.931 ETSI ETS 300 324-1; ETS 300 347-1		

Использование информации, предоставляемой системой СПАЙДЕР в различных подразделениях Оператора повышает коммерческую эффективность ее внедрения и сокращает период окупаемости проекта

Области применения

КАЧЕСТВО ОБСЛУЖИВАНИЯ

Проактивный мониторинг сети на уровне услуг, анализ качества обслуживания и статистики использования различных услуг обеспечивают эффективное планирование ресурсов и рост доходов. Повышение оперативности при рассмотрении жалоб абонентов повышает их лояльность.

Возможности системы;

- Унифицированные отчеты и графики показателей QoS для услуг разных типов с разбивкой по: присоединенным операторам, кодам направлений (страна/регион/город/оператор), типам услуг
- Тревожные сообщения QoS при снижении показателя ниже настраиваемого пользователем граничного значения с выводом в журнал событий и также отображением на карте
- Несколько десятков заданных КРІ, удобный инструмент для создания пользовательских индикаторов
- Возможность как раздельного анализа качества услуг NGN и ТфОП, так и сведения статистики по ним в единый отчет
- Табличный и графический формат отчетов
- Формирование подробных записей о каждом вызове xDR (CDR, IPDR, TDR)

Преимущества:

- Проактивное выявление проблем сети для предотвращения потерь
- Снижение числа претензий абонентов и присоединенных операторов
- Минимализация финансовых убытков от потерянных вызовов

ЭФФЕКТИВНАЯ ЭКСПЛУАТАЦИЯ

Мультипротокольный мониторинг обеспечивает стабильность работы при взаимодействии оборудования разных технологий (PSTN/TDM, NGN/IP). Исследование причин и источников каждого отказа, трассировка любого проблемного вызова, а также анализ общей статистики по причинам и источникам отказов позволяет выявлять проблемные точки сети.

Возможности системы:

- Отображение структуры, состояния, нагрузки сети в режиме реального времени
- Статистика по отказам и перегрузкам
- Мультипротокольная трассировка вызовов в реальном времени и по историческим данным
- Декодирование сигнальных сообщений разных технологий связи
- Анализ эффективности маршрутизации
- Длительное хранение и архивация данных

Преимущества:

- Снижение эксплуатационных затрат и трудоемкости при построении, развитии и управлении сетью
- Ускорение внедрения новых услуг
- Обеспечение надежности функционирования сети
- Минимизация времени простоя оборудования и недоступности услуг

ФРОД И БЕЗОПАСНОСТЬ

Контроль в реальном времени за содержанием сигнальных сообщений и поведением заданных групп абонентов ("черные", "белые", "серые" списки и др. критерии) позволит ОТДЕЛУ БЕЗО-ПАСНОСТИ повысить оперативность и эффективность реагирования на преднамеренные угрозы информационной безопасности, операторские ошибки, сбои систем сбора биллинговой информации и выставления счетов.

Возможности системы;

- Обнаружение и регистрация фактов мошенничества и угроз информационной безопасности с минимальными затратами ручного труда
- Предоставление информации соответствующим службам
- Прослушивание и запись информации в разговорных каналах
- Формирование CDR в режиме реального времени

Преимущества:

■ Повышение оперативности и эффективности реагирования на преднамеренные угрозы информационной безопасности, операторские ошибки, сбои систем сбора информации и выставления счетов